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An input power modulation technique is proposed as an alternative to the widely used
steady-state power injection method for the in-situ determination of dissipation and
coupling loss factors of subsystems selected for an SEA model of a physical system. There
is no requirement to measure input power and, in principle, response measurements are
made at only one point on each subsystem. Theory is developed for a two-subsystem model.
An input power modulation device is described, and the loss factor estimates resulting from
its application to systems comprising two structurally coupled plates and two acoustically
coupled rooms are presented and compared with those from steady state tests. A
phenomenon of energy response modulation phase dispersion is observed at modulation
frequencies in excess of about 10 Hz.
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1. INTRODUCTION

The first stage in the application of Statistical Energy Analysis to a physical system is the
selection of subsystems. At present, there is little in the way of guidance or criteria to assist
the SEA modeller in taking this crucial step, although efforts are currently being made to
remedy this unsatisfactory situation [1]. Although rapid progress is being made in the
theoretical derivation of coupling loss factors between structural components, there still
exists a need for empirically derived data: to validate theoretical analysis; to determine
coupling loss factor (CLF’s) in cases in which theoretical estimates are unavailable; and
to determine dissipation loss factors (DLF’s), which generally cannot be theoretically
predicted. The universally employed method for the in situ determination of CLF’s and
DLF’s is based upon the sequential injection of vibrational/acoustic power into each
subsystem, together with the measurement of response at a number of locations in each
subsystem see [e.g. references, 2, 3]. Physical power injection may be replaced by virtual
power injection derived from transfer function measurements [4].

This method has a number of drawbacks: (i) physical constraints often hinder the
attachment of vibration exciters at appropriate locations; (ii) experimental estimates of
input power are widely recognized to be subject to various errors which may sometimes
be large and are always unknown; (iii) the power injection technique relies upon the
generation of a subsystem energy matrix—but energy cannot be directly measured and
must be inferred from a set of measurements of kinetic or dynamic variables at discrete
points distributed over a subsystem; the associated uncertainty in the total energy can be
very large indeed; (iv) an inappropriate choice of subsystems may create an ill-conditioned
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energy matrix which upon inversion will produce large errors in the derived loss factors;
(v) measurement errors and uncertainties in individual elements of the energy matrix are
propagated throughout the predicted loss factor matrix in a very complex manner; (vi) last,
but not least, for systems divided into more than about five subsystems, the power injection
method is very time consuming.

Various strategies have been devised to minimize the errors of loss factor estimation
associated with the power injection method [5], but the economic cost of application
remains a significant deterrent to its widespread application. As a consequence, an
alternative test principle has been independently proposed by Lundberg [6–8] and Fahy
[9]. This paper, which is based upon an M.Sc. dissertation by Ruivo [10], explains the
principle of an input power modulation technique, and presents a comparison of DLF and
CLF estimates for simple two-element structural and acoustic systems derived by means
of steady state and modulation techniques. Attention is also drawn to a phenomenon of
energy response modulation phase dispersion which has implications for the validity of
so-called ‘‘transient SEA’’.

2. THEORY

2.1.  

The assumption fundamental to the following analysis, and to its practical application,
is that the steady state SEA proportionality relation between the time-average rate of
energy transfer (power flow) from subsystem A to subsystem B (forward power), and the
time-average vibrational energy stored in subsystem A, holds when the short-time average
input power and energies vary smoothly on a time scale much larger than the average
period of the vibrational processes in operation. An associated implication is that the
vibrational state of subsystem may be expressed in terms of a single degree of freedom,
so that the temporal variation of energy density is assumed to be spatially uniform over
the domain of any one subsystem. The physical implication is that energy transferred to
a subsystem is diffused throughout the subsystem on a time scale much smaller than the
input power modulation period.

A running short-time average value of an energetic quantity X(t) is defined as

�X(t)�T=(1/T) g
t+T/2

t−T/2

X(t)dt. (1)

In this paper, for typographical simplicity, �X(t)�T is written as �X�, on the understanding
that T indicates an integration (averaging) interval which is much greater than the inverse
of the lowest frequency of the linear quantities which contribute to X(t), but much smaller
than the inverse of the imposed modulation frequency. The resulting quantity will resemble
the envelope of X(t).

2.2.         

The subsystems are labelled 1 and 2. It is assumed that vibrational power is injected into
subsystem 1 through the agency of some vibrational excitation mechanism, and that the
excitation is frequency-band limited. Because the input power modulation frequencies used
are two or three orders smaller than the vibrational frequencies, the modulation process
causes negligible widening of this band. On the assumption that the subsystems behave
linearly, their responses will be confined to the same frequency band. Hence one may use
the term ‘‘band-limited input power’’, which, of course, does not mean that the
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spectrum of the time-dependent power is so limited. It is further assumed that, by means
of some hypothetical mechanism, this band-limited power is modulated harmonically at
frequency 2V, as represented by

�P1�=P�1 +P	 1 exp (i2Vt), (2)

in which the tilde represents the complex amplitude of a phasor.
In accordance with the assumed linearity of the SEA power balance equations,

�E1�=E1 +E	 1 exp (i2Vt) and �E2�=E2 +E	 2 exp (i2Vt). (3a, b)

These quantities are depicted graphically in Figure 1, in which the significant response
descriptors are the normalized modulation response amplitudes, =E	 1 =/=P	 1 = and =E	 2 =/=P	 1 =, the
relative phases {(E	 1/P	 1) and {(E	 2/P	 1), and the relative modulation amplitudes =E	 1 =/E1

and =E	 2=/E2.
On the basis of the fundamental assumptions stated above, the time-dependent SEA

power balance equations may be written

d�E1�/dt= �P1�−�E1�v(h12 + h1)+ �E2�vh21, (4a)

d�E2�/dt= �E1�vh12−�E2�v(h21+h2), (4b)

Figure 1. Envelopes of (a) input power and stored energy in (b) subsystem 1 and (c) subsystem 2.
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where hi represents DLF and hij represents CLF. Substitution of the expressions for �P�
and �Ei� from equations (2) and (3) into equations (4), together with elimination of steady
state averages P� and Ei , yields

P	 1 −E	 1v(h12 + h1 + i2V/v)+E	 2vh21 =0, E	 1vh12 −E	 2v(h21 + h2 + i2V/v)=0.

(5a, b)

For simplicity of notation, the following substitutions will be employed:

a0 h12v, b0 h21v, c0 h1v, d0 h2v.

Equations (5) yield the relations

E	 2/E	 1 = a/[b+ d+2iV], E	 2/P	 1 = a/[4V2
0 −4V2 +2iVC], (6a, b)

E	 1/P	 1 = [b+ d+2iV]/[4V2
0 −4V2 +2iVC], (6c)

{(E	 2/E	 1)=arctan [−2V/(b+ d)], {(E	 2/P	 1)=arctan [−2VC/(4V2
0 −4V2)], (6d, e)

{(E	 1/P	 1)=arctan [2V(4V2
0 −4V2 − (b+ d)C)]/[(4V2

0 −4V2) (b+ d)+4V2C], (6f)

=E	 1 =/E1 = [(b+ d)2 +4V2]1/2[4V2
0 /(b+ d)]/[(4V2

0 −4V2)2 +4V2C2]1/2, (6g)

=E	 2 =/E2 =4V2
0 /[4V2

0 −4V2)2 +4V2C2]1/2, (6h)

in which 4V2
0 = bc+ cd+ ad and C= a+ b+ c+ d.

Equation (6b) has the form of a s.d.o.f. resonant response, in which 2V represents the
excitation frequency, bc+ dc+ ad is equivalent to the square of the natural frequency 2V0,
and a+ b+ c+ d is equivalent to the damping ratio C. As it will turn out, this ‘‘resonant’’
system is normally greatly overdamped, and a resonance peak is not observed.

It is assumed that the (unknown) constant which relates the total energy of a subsystem
to the short-time average of the square of a relevant response variable measured at any
point on the subsystem is the same for steady state and modulated quantities; for example,
the normalized modulation depth =E	 1 =/E1 may be determined from measurements at any
position on subsystem 1. The modulation phase of short-time averaged subsystem energy
relative to that of input power may also be determined from a response measurement at
any point on the subsystem.

On the basis of this assumption, equations (6d–h) define non-dimensional quantities
which may be evaluated experimentally from single point response measurements and
without quantitative knowledge of the absolute magnitude of the input power. The crucial
question of the validity of this fundamental assumption is explored in section 6.2.

2.3.     

It is not possible to solve for all the unknowns a, b, c and d from equations (6d–h).
Nor can additional independent non-dimensional ratios be obtained by applying excitation
to subsystem 2, since 4V2

0 and C remain unchanged. This impasse may be overcome in two
ways. If the theoretical subsystem modal density ratio n1/n2 is available, fundamental SEA
theory shows that it may be equated to the ratio h21/h12 = b/a; alternatively, multi-point
response measurements may be made on each subsystem to provide an estimate of the
absolute energy ratios E2/E1 or =E	 2 =/=E	 1 =; this is attended by the problem of estimating the
effective subsystem masses, which is a source of considerable uncertainty in SEA
experiments.

Since the need to make multi-point measurements is undesirable, the following analysis
is based upon an assumption that n1/n2 can be estimated.
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When

{(E	 2/E	 1)=−P/4, 2V= b+ d. (7a)

When

{(E	 2/P	 1)=−P/2, 2V=2V0 = [c(b+ d)+ ad]1/2 (7b)

and

=E	 2 =/E2 =2V0/C=2V0/(a+ b+ c+ d), (7c)

from which b+ d and a+ c may be obtained.
Let n1/n2 = b/a= a, a+ c=M and b+ d=N. Then

a=[(MN−4V2
0 )/a]1/2, b= aa, c=M− a and d=N− aa. (7d, e)

Since h12�h1 and h21�h2 in many practical systems, the order of magnitude of the ratio
of modulation ‘‘resonance’’ frequency 2V0 to excitation band centre frequency v is given
by equation (7b) as 2V0/v0 (h1h2)1/2; i.e. typically between 10−2 and 10−3.

Although it is, in principle, possible to employ equations (7a–c) directly, it is preferable
to curve-fit the measured variations with the modulation frequency 2V of {(E	 2/E	 1),
{(E	 2/P	 1) and =E	 2 =/E2, expressed by equations (6c), (6f) and (6h). Equation (7d) is not well
conditioned, and it will normally be necessary to measure responses at more than one point
to assess the standard deviation of the estimates of h12 and hence of h21. It would also be
wise to check the sensitivity of the estimated values to the location of the power injection
locations.

3. POWER MODULATION

Instantaneous power imput generated by an applied vibrational force is given by

P(t)=F(t)n(t), (8)

in which n is the component of response velocity vector at the driving point which is
co-linear with the force. P(t) can theoretically be conditioned according to equation (2),
but it contains the response quantity n and therefore can not be independently controlled.

Instead, a band-limited random input force (exciter current) was cosinusoidally
modulated at frequency V, and squared, hence yielding a squared force modulated at
frequency 2V about a steady mean value:

F(t)= ( f(t) cos Vt)2 = ( f 2(t)/2) (1+cos 2Vt). (9)

The presence of 2V in this equation explains its earlier appearance in the power balance
equations.

In order to make an initial attack on the fundamental question concerning the relation
between F(t) and P(t), a simple harmonic model has been analyzed. Since it does not
provide a complete answer to this question, but may provoke others to improve on it,
the details have been relegated to the Appendix. The result of the analysis, plus
computational simulations, suggest that the error incurred by assuming that �P� is
proportional to �F2� may not be large, especially for subsystems having modal overlaps
of unity and above.
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Figure 2. The geometry of coupled plates. Dimensions in mm; plate thickness=3 mm; drawing not to scale.

4. STEADY STATE POWER INJECTION MEASUREMENTS

4.1.  

The steady state power injection method was applied to the two uniform steel plates
coupled by straps of the same material shown in Figure 2; the superscript on E indicates
which subsystem is directly excited. The force applied by a non-contact magnet-and-coil
exciter was monitored by an interposed Brüel and Kjaer (B&K) type 8200 force transducer,
and the resulting acceleration at the excitation point was monitored by means of a B&K
type 4374 (0·65 g) accelerometer calibrated with a normalized standard deviation of
repeatability of 1%. The nominal force transducer calibration was assumed. A broadband
(100–5000 Hz) excitation signal was applied at three points on each plate and, in each case,
the resulting accelerations were measured at ten points on each plate, all with a frequency
resolution of 3·125 Hz and a BT product of 10. The force–acceleration coherence was very
close to unity over the entire frequency range.

The plate vibrational kinetic energy densities were estimated from the acceleration
spectra in 200 Hz bands over the range 400–4000 Hz. The input powers were estimated
from the imaginary part of the force–acceleration cross-spectrum with a BT product of
25 [11]; this method proved to be more reliable than that based upon the measurement
of the force or acceleration auto-spectra and the theoretical infinite plate mobility. The
DLF’s and CLF’s were derived by application of the conventional technique of energy
matrix inversion:

v[h]= [E�]−1[P�]. (10)
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Figure 3. Loss factor estimates for coupled plates: 200 Hz bands. (a) +, h1, ×, h2; (b) w, h12, (, h21.

The results are presented in Figure 3, which shows that the CLF’s are generally smaller
than the DLF’s, a commonly accepted indicator of a state of ‘‘weak coupling’’. Note that
damping sheets were applied to the bare plates to increase their DLF’s to values more
typical of practical situations. The associated modal energy spectra, which confirm the
existence of weak coupling, are presented in Figure 4.

Figure 4. Modal energies of coupled plates: 200 Hz bands. (a) Input power applied to plate 1; (b) input power
applied to plate 2. Modal energies: (a) + plate 1, × plate 2; (b) w plate 1, ( plate 2.
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Figure 5. The geometry of coupled rooms. Dimensions in metres.

4.2.  

The steady state power injection method was applied to two small reverberant rooms
coupled by an aperture in the separating wall (see Figure 5). The power injected by a
loudspeaker was determined from a sound intensity scan over an enclosing surface, using
a B&K typw 3519 intensity probe (spacing 12 mm) and a B&K type 4437 sound intensity
analyzer to generate sound pressure and particle velocity signals to feed to a FFT analyzer
for the estimation of the cross-spectrum. Calibration was effected by a B&K type 3541
Calibrator. The estimated sound power repeatability range was typically 2 0·5 dB. Sound
pressure, for the estimation of acoustic energy densities, was measured with B&K type
microphones 4165 calibrated with a class 1 pistonphone, with the normal associated
accuracy and precison.

The estimates of DLF’s and CLF’s obtained from energy matrix inversion are presented
in Figure 6 and the associated modal energies are presented in Figure 7: ‘‘weak coupling’’
is apparent over the whole frequency range of measurement.

Figure 6. Loss factor estimates for coupled rooms: 200 Hz bands. (a) + h1, × h2; (b) w h12, ( h21.
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Figure 7. The modal energies of coupled rooms: 200 Hz bands. Input power applied to (a) room 1 and (b)
room 2. Modal energies: (a) + room 1, × room 2; (b) w room 1, ( room 2.

5. INPUT POWER MODULATION TESTS

5.1.  

An analog electrical circuit was designed and constructed to generate signals
representing input ‘‘power’’ and response energy. The excitation signal is multiplied by a
sinusoidal signal generated by an external oscillator; the modulated signal is squared and

Figure 8. A schematic of modulation tests on coupled plates. (1) Accelerometer; (2) force transducer; (3) shaker.
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Figure 9. A schematic of modulation tests on coupled rooms. (1) Microphone; (2) loudspeaker.

Figure 10. Examples of best-fit curves for plates.

smoothed by low-pass filtering to produce an approximation to its envelope. The response
signals are also squared and smoothed. The device also outputs the long-time average of
the squared signals. A schematic of the equipment as utilized for the plate test is shown
in Figure 8 and that for the room tests in Figure 9. The phase mismatch between the
envelope-generating channels was less than 21° over the frequency range of the test.
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5.2.  

Band-pass filtered random input signals in the frequency ranges 600–800, 2400–2600 and
3800–4000 Hz were selected for comparison of loss factor estimates with those from the
steady state power injection tests. Time constraints on the M.Sc. project precluded tests
in a greater number of bands. Modulation frequencies were varied in steps between 0·5
and 10 Hz. At each frequency the smoothed ‘‘envelope’’ signals were input to an FFT
analyzer which estimated the transfer function and phase at the ‘‘power’’ modulation
frequency 2V, using a high resolution zoom. This frequency was easily identifiable by the
dominant coherence peak of unity. The modulated signal representing the acoustic input
to the reverberation rooms was derived from a Laser Doppler Velocimeter monitoring the
loudspeaker cone velocity. Although not necessary in principle, response measurements
were made at ten individual locations on each subsystem to investigate the degree of spatial
uniformity of response modulation phase.

5.3.  

Initial tests showed that the equations for loss factors based upon data generated
by excitation of only subsystem 1 were poorly conditioned, the estimates of h21 and h2

being particularly unreliable. Consequently, although not in principle necessary,
input power was sequentially injected into each subsystem to improve the quality of
the results. The various relations expressed by equations (6d–h) were evaluated
as functions of 2V, and best-fit curves computed, under the constraint that the phase
angles had to be zero at zero Hz (steady state). Examples are shown in Figures 10
and 11.

Figure 11. Examples of best-fit curves for rooms.
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T 1

A comparison of estimated CLF’s and DLF’s of coupled plates

Loss and Values from Values from
Band centre coupling loss power injection power Deviation

frequency (Hz) factors method modulation technique (db)

700 (U3, L10) h1 5·13e−3 8·40e−3 2.2
h12 2·44e−3 2·60e−3 0.3
h21 1·91e−3 1·80e−3 −0·2
h2 4·56e−3 4·60e−3 0

700 (U7, L8) h1 5·13e−3 7·30e−3 1·6
h12 2·44e−3 2·40e−3 0
h21 1·91e−3 1·70e−4 −0.5
h2 4·56e−3 2·60e−3 −2·5

2500 h1 7·22e−3 7·60e−3 0·2
h12 1·84e−3 1·50e−3 −0·8
h21 1·40e−3 1·10e−3 −1·0
h2 4·85e−3 3·90e−3 −1·0

3900 h1 1·27e−2 8·50e−3 −1·7
h12 1·43e−3 1·20e−3 −3·0
h21 2·50e−3 8·18e−4 −4·9
h2 5·84e−3 4·00e−3 −1·6

6. RESULTS

6.1.   

The DLF’s and CLF’s derived from the steady state and modulation techniques are
compared in Table 1 and 2. Note that results are obtained for two different pairs of points
at 700 Hz for plates and 3900 Hz for rooms.

T 2

As table 1, but for coupled rooms

Band centre Loss and Values from Values from
frequency coupling loss power injection power Deviation

(Hz) factors method modulation technique (dB)

700 h1 2·77e−3 2·40e−3 −0·7
h12 2·72e−4 5·17e−4 2·8
h21 5·89e−4 6·13e−4 0·2
h2 5·43e−4 2·30e−3 6·3

2500 h1 6·16e−4 5·26e−4 −0·7
h12 4·48e−5 1·06e−4 3·7
h21 8·71e−5 1·26e−4 1·6
h2 1·72e−4 5·60e−4 5·1

3900 (1/1) h1 3·33e−4 4·53e−4 1·3
h12 2·55e−5 5·60e−5 3·4
h21 4·02e−5 6·64e−5 2·2
h2 1·40e−4 3·12e−4 3·5

3900 (6/6) h1 3·33e−4 3·79e−4 0·6
h12 2·55e−5 5·87e−5 3·6
h21 4·02e−5 6·96e−5 2·4
h2 1·40e−4 4·42e−4 5·0
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T 3

The phase dispersion of plates

Modulation Pair of measurement
frequency (Hz) locations {(E	 2/E	 1) (degrees)

1 1/1 −6
4/4 −7
9/9 −9

10/10 −7

2·3 1/1 −15
4/4 −13
9/9 −13

10/10 −14

5 1/1 −31
4/4 −23
9/9 −21

10/10 −27

10 1/1 −58
4/4 −23
9/9 −33

10/10 −40

6.2.    

It was observed for both the plates and the rooms that the energy envelope response
phase exhibited spatial variations which increased with modulation frequency. An example
from the plate measurements is presented in Table 3. Remarkably, modification of the
plate mass by 10% by the addition of ten randomly spaced magnets altered these values
very little. The same phenomenon was observed in the rooms, as shown by Table 4.
Measurements of the relative phases of the envelope of Cartesian components of acoustic
kinetic density and of the potential energy density were also made in a room with an
intensity probe and B&K 4437 intensity analyzer which outputs analog signals
proportional to sound pressure and to the component of particle velocity directed along

T 4

The phase dispersion of rooms

Modulation Pair of measurement
frequency (Hz) locations {(E	 2/E	 1) (degrees)

1 1/1 −32
2/2 −33
4/4 −29
6/6 −35

5 1/1 −82
2/2 −69
4/4 −47
6/6 −66

10 1/1 −58
2/2 −106
4/4 −67
6/6 −75
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T 5

Relative phases of potential energy density and one Cartesian component of kinetic energy
density

Modulation {(p̃2/ũ2) {(p̃2/ũ2)
Frequency Measurement frequency Probe axial (degrees) (degrees)

(Hz) location (Hz) direction without panels with panels

700 1 1 Vertical 3 −1
Transversal 2 1
Longitudinal −3 1

4 Vertical 17 −5
Transversal 30 5
Longitudinal 5 8

8 Vertical −35 −8
Transversal −162 13
Longitudinal −3 18

3900 1 1 Vertical 3 2
Transversal −3 2
Longitudinal −1 1

4 Vertical 1 3
Transversal −1 4
Longitudinal 1 3

8 Vertical −14 −2
Transversal 15 3
Longitudinal 1 3

3900 2 1 Vertical 4 —
Transversal −5 —
Longitudinal −3 —

4 Vertical −2 —
Transversal −6 —
Longitudinal −1 —

8 Vertical −36 —
Transversal −20 —
Longitudinal 12 —

the intensity probe axis. The results obtained in one of the empty reverberant rooms, and
in the same room when treated with a number of sound absorbent panels installed, are
presented in Table 5. The additional damping is seen generally to reduce the phase
differences.

6.3.    

The reverberation times of the two reverberant rooms were independently determined
and the resulting estimates of DLF were compared with those derived from the application
of the two power injection methods (see Table 6).

6.4.  

A Monte Carlo distribution analysis of the sensitivity of the estimated DLF’s and CLF’s
to error in measured data showed that equation (7b) was potentially the greatest source
of error [10].
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T 6

A comparison of room loss factors estimated from energy decay and power input techniques

Reverberation
time for h2 h2

Frequency room 2, h2 Power injection Power modulation Deviation*
(Hz) T2(s) =2·2/fT2 method technique (dB)

700 2·15 1·46e−3 5·43e−4 2·30e−3 2·0
2500 2·12 4·15e−4 1·72e−4 5·60e−4 1·3
3900 (1/1) 1·64 3·44e−4 1·40e−4 3·12e−4 −0·4
3900 (6/6) 1·64 3·44e−4 1·40e−4 4·42e−4 1·1

* Deviation between values estimated from power modulation and from reverberation time.

7. DISCUSSION OF RESULTS

The results presented in Tables 1 and 2 indicate fair agreement between the estimates
of DLF’s and CLF’s obtained by the steady state and modulated power injection
techniques. It should, of course, be remembered that both sets of estimates are subject to
uncertainty, no precise theoretical estimates being available.

The modulation phase dispersion phenomenon has also been observed by Lundberg [7,
8], which he characterizes as loss of spatial coherence of the modulation transfer function.
As far as we are aware, this phenomenon has not been theoretically investigated (at the
time of writing): this is clearly an urgent requirement, since the phenomenon appears to
place considerable doubt on the validity of extension of the SEA equations to represent
non-stationary vibrational energy flow between subsystems, especially in the case of
impulsive excitation in which rapid rates of change of energy density and energy exchange
occur. The observed differences between the modulation phases of kinetic and potential
energy densities is particularly puzzling, since exchange between these components of
energy density would be expected to take place on a time scale associated with the vibration
frequency which is typically more than one hundred times the modulation frequency in
the reported experiments.

As proposed by Lundberg [8], it is unnecessary to implement the input modulation by
physical means: the process can be simulated computationally on the basis of measured
impulse responses. It appears likely that such implementation, which avoids the complexity
of the physical modulation process, together with its attendant time consumption and
imperfections, is the appropriate way to proceed in future, and opens the way for
application to multiple subsystem networks.

8. CONCLUSIONS

A procedure for determining the DLF’s and CLF’s of an SEA system by means of
vibrational input modulation has been presented. The results compare reasonably well with
those derived by application of the conventional steady state power injection techique. The
principle advantages over the latter are that it is not necessary to quantify the input power,
and, provided that reliable estimates of modal densities are available, response
measurements are required only at one point on each subsystem. However, questions
remain about the quality of numerical conditioning of the equations used to derive the
loss factors, and the resulting sensitivity to errors in experimentally derived data is yet to
be established. The current results indicate that accuracy is improved by injecting power
sequentially into each subsystem in turn. Replacement of the reported physical input
modulation procedure by computational simulation based upon measured impulse
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responses offers the opportunity for further extensive research on the merits, or otherwise,
of the modulation technique in application to complex practical systems.

A phenomenon of spatial dispersion of response energy modulation phase has been
observed. Its physical origin and manifestation in spatially uniform and non-uniform
subsystems urgently requires theoretical modelling and analysis, since it places in doubt
the validity of extension of the SEA power balance equations to cases of transient
excitation.
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APPENDIX: PRACTICAL IMPLEMENTATION OF THE POWER MODULATION
TECHNIQUE

The technique of input power modulation will normally be applied to a band-limited
random input force signal. However, in order to illustrate the principle of the technique,
a single frequency input force will be assumed. Let the input force be expressed as

F(t)=F cos vt cos Vt= 1
2 F(cos (v+V)t+cos (v−V)t). (A1)
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Let v+V=v1 and v−V=v2. Assume the force to be applied to a subsystem having
complex point mobilities Y	 (v1) and Y	 (v2) at these frequencies. The instantaneous power
input is given by

P(t)= 1
4 F2[YR (v1) (cos 2v1t+cos v1t cos v2t)

−YI (v1) (cos v1t sin v1t+sin v1t cos v2t)

+YR (v2) (cos 2v2t+cos v1t cos v2t)

−YI (v2) (cos v2t sin v2t+cos v1t sin v2t)], (A2)

where Y	 =YR + iYI. Averaging P(t) over an interval of time which is long compared with
2p/v1 and 2p/v2, but short compared with 2p/V, yields the approximate expression for
the ‘‘smoothed’’ input power:

�P�1 1
8 F2{[YR (v1)+YR (v2)] [1+ cos 2Vt]− [YI (v1)−YI (v2)] [ sin 2Vt]}. (A3)

The ratio of the average value of the YI difference to the average value of YR sum over
a band of frequency containing a number of modal resonances will normally be much less
than unity, and the second product will be negligible. Equation (A3) is therefore a good
approximation to the desired form of equation (2): hence, full wave modulation of the
imput force at frequency V will produce the desired form of input. The smoothed quantities
may be obtained by passing the input and response signals through a squaring circuit
followed by a smoothing circuit.


